Rationally combining anti-VEGF therapy with radiation in NF2 schwannoma

نویسندگان

  • Na Zhang
  • Xing Gao
  • Yingchao Zhao
  • Meenal Datta
  • Pinan Liu
  • Lei Xu
چکیده

Neurofibromatosis type 2 is characterized by bilateral vestibular schwannomas, which are benign tumors that originate from the nerve sheath and damage the nerve as they grow, causing neurological dysfunction such as hearing loss. Current standard radiation therapy can further augment hearing loss by inducing local damage to mature nerve tissue. Treatment with bevacizumab, a Vascular Endothelial Growth Factor (VEGF)-specific antibody, is associated with tumor control and hearing improvement in NF2 patients; however, its effect is not durable and its mechanism of action on improving nerve function is unknown. Anti-VEGF treatment can normalize the tumor vasculature, improving vessel perfusion and delivery of oxygen. It is known that oxygen is a potent radiosensitizer; therefore, combining anti-VEGF treatment with radiation therapy can achieve better tumor control and allow for the use of lower radiation doses, thus minimizing treatment-related neurological toxicity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Anti-VEGF treatment improves neurological function and augments radiation response in NF2 schwannoma model.

Hearing loss is the main limitation of radiation therapy for vestibular schwannoma (VS), and identifying treatment options that minimize hearing loss are urgently needed. Treatment with bevacizumab is associated with tumor control and hearing improvement in neurofibromatosis type 2 (NF2) patients; however, its effect is not durable and its mechanism of action on nerve function is unknown. We mo...

متن کامل

Combining curcumin (diferuloylmethane) and heat shock protein inhibition for neurofibromatosis 2 treatment: analysis of response and resistance pathways.

Neurofibromatosis type 2 (NF2) is a genetic condition characterized by inactivation of the NF2 tumor suppressor gene and the development of schwannomas. The NF2 gene product, merlin, is activated (dephosphorylated) by contact inhibition and promotes growth suppression. We investigated the effect of curcumin (diferuloylmethane), a molecule with anti-inflammatory and antitumorigenic properties, o...

متن کامل

Preclinical Development Combining Curcumin (Diferuloylmethane) and Heat Shock Protein Inhibition for Neurofibromatosis 2 Treatment: Analysis of Response and Resistance Pathways

Neurofibromatosis type 2 (NF2) is a genetic condition characterized by inactivation of the NF2 tumor suppressor gene and the development of schwannomas. The NF2 gene product, merlin, is activated (dephosphorylated) by contact inhibition and promotes growth suppression. We investigated the effect of curcumin (diferuloylmethane), a molecule with anti-inflammatory and antitumorigenic properties, o...

متن کامل

Targeting the cMET pathway augments radiation response without adverse effect on hearing in NF2 schwannoma models.

Neurofibromatosis type II (NF2) is a disease that needs new solutions. Vestibular schwannoma (VS) growth causes progressive hearing loss, and the standard treatment, including surgery and radiotherapy, can further damage the nerve. There is an urgent need to identify an adjunct therapy that, by enhancing the efficacy of radiation, can help lower the radiation dose and preserve hearing. The mech...

متن کامل

Anti-vascular endothelial growth factor therapies as a novel therapeutic approach to treating neurofibromatosis-related tumors.

Patients with bilateral vestibular schwannomas associated with neurofibromatosis type 2 (NF2) experience significant morbidity such as complete hearing loss. We have recently shown that treatment with bevacizumab provided tumor stabilization and hearing recovery in a subset of NF2 patients with progressive disease. In the current study, we used two animal models to identify the mechanism of act...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 1  شماره 

صفحات  -

تاریخ انتشار 2016